108 resultados para bioluminescent imaging

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunosensor based on imaging ellipsometry and its potential applications was demonstrated in this paper. It has been proven a fast, reliable, and convenient method to quantify the thickness distribution of protein layers or detect protein concentration in solution. Combined with a protein chip, the immunosensor was able to detect multiple analytes simultaneously without any labeling. Preliminary results demonstrated how this immunosensor could be used to monitor several independent biospecific binding processes in real-time and in situ conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to monitor multiple protein reaction processes simultaneously, a biosensor based on imaging ellipsometry operated in the total internal reflection mode is proposed. It could be realised as an automatic analysis for protein interaction processes with real-time label-free method. Its principle and methodology as well as a demonstration for its applications are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging ellipsometry was combined with electrochemical methods for studying electrostatic interactions of protein and solid surfaces. The potential of zero charge for gold-coated silicon wafer/solution interfaces wad determined by AC impedance method. The potential of the gold-coated silicon wafer was controlled at the potential of zero charge, and the adsorption of fibrinogen on the potential-controlled and non-controlled surfaces was measured in real time at the same time by imaging ellipsometry The effect of electrostatic interaction was studied by comparing the difference between the potential of controlled adsorption and the Potential of noncontrolled adsorption. It was shown that the rate of fibrinogen adsorption on the potentiostatic surface was faster than that on the nonpotentiostatic surface. The electrostatic influence on fibrinogen adsorption on the gold-coated silicon wafer was weak, so the hydrophobic interaction should be the major affinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of biosensor based on imaging ellipsometry was proposed ten years ago. Its principle and the methodology as well as some solutions to problems which have to be faced during the development are mentioned. Its properties of phase sensitive, high throughput and fast sampling, as well as label-free, sensitivity better than 1 ng/ml for Immunoglobulin G, and real-time analysis for protein interaction process, etc. provide a potential for applications in biomedicine field. The recent biosensing development with total internal reflection imaging ellipsometry is presented also. [GRAPHICS] An example of 48 protein arrays in matrix. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a measurement of flow patterns and flow velocities of gas-water two-phase flows based on the technique of electrical resistance tomography (ERT) in a 40m horizontal flow loop. A single-plane and dual-plane ERT sensor on conductive ring technique were used to gather sufficient information for the implementation of flow characteristics particularly flow pattern recognition and air cavity velocity measurement. A fast data collection strategy was applied to the dual-plane ERT sensor and an iterative algorithm was used for image reconstruction. Results, in respect to flow patterns and velocity maps, are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is to investigate molecule interactions between antigen and antibody with ellipsometric imaging technique and demonstrate some features and possibilities offered by applications of the technique. Molecule interaction is an important interest for molecule biologist and immunologist. They have used some established methods such as immufluorcence, radioimmunoassay and surface plasma resonance, etc, to study the molecule interaction. At the same time, experimentalists hope to use some updated technique with more direct visual results. Ellipsometric imaging is non-destructive and exhibits a high sensitivity to phase transitions with thin layers. It is capable of imaging local variations in the optical properties such as thickness due to the presence of different surface concentration of molecule or different deposited molecules. If a molecular mono-layer (such as antigen) with bio-activity were deposited on a surface to form a sensing surface and then incubated in a solution with other molecules (such as antibody), a variation of the layer thickness when the molecules on the sensing surface reacted with the others in the solution could be observed with ellipsometric imaging. Every point on the surface was measured at the same time with a high sensitivity to distinguish the variation between mono-layer and molecular complexes. Ellipsometric imaging is based on conventional ellipsometry with charge coupled device (CCD) as detector and images are caught with computer with image processing technique. It has advantages of high sensitivity to thickness variation (resolution in the order of angstrom), big field of view (in square centimeter), high sampling speed (a picture taken within one second), and high lateral resolution (in the order of micrometer). Here it has just shown one application in study of antigen-antibody interaction, and it is possible to observe molecule interaction process with an in-situ technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of biosensor with imaging ellipsometry was proposed about ten years ago. It has become an automatic analysis technique for protein detection with merits of label-free, multi-protein analysis, and real-time analysis for protein interaction process, etc. Its principle, andrelated technique units, such as micro-array, micro-fluidic and bio-molecule interaction cell, sampling unit and calibration for quantitative detection as well as its applications in biomedicine field are presented here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An auto-focusing method based on the image brightness gradient sharpness function is presented for imaging ellipsometry system, in which the image plane of the thin-film specimen is not perpendicular to the optical axis. The clear image of a specimen with large area is obtained by moving the imaging sensor in optical axis direction and around its sensitive surface centre successively. The experimental results demonstrate its feasibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid detection and identification of pathogens is important for minimizing transfer and spread of disease. A label-free and multiplex biosensor based on imaging ellipsometry (BIE) had been developed for the detection of phage M13KO7. The surface of silicon wafer is modified with aldehyde, and proteins can be patterned homogeneously and simultaneously on the surface of silicon wafer in an array format by a microfluidic system. Avidin is immobilized on the surface for biotin-anti-M13 immobilization by means of interaction between avidin and biotin, which will serve as ligand against phage M13KO7. Phages M13KO7 are specifically captured by the ligand when phage M13KO7 solution passes over the surface, resulting in a significant increase of mass surface concentration of the anti-M13 binding phage M13KO7 layer, which could be detected by imaging ellipsometry with a sensitivity of 10(9) pfu/ml. Moreover, atomic force microscopy is also used to confirm the fact that phage M13KO7 has been directly captured by ligands on the surface. It indicates that BIE is competent for direct detection of phage M13KO7 and has potential in the field of virus detection. (C) 2008 Elsevier B.V. All rights reserved.